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B 0’. 10” 

$ wt 11” 25’ 
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41 CW 0,962 0,961 
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Tablealr 2. X/O = 2,8 
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20” 30” 40” 50’ 60“ 70” 
I_- _______. ._ __ ___.~__. 

ll”7 21% lo”2 15” 16”l 13% 
---_--. --. __ -- 

26”4 36”5 26”3 33”8 37% 37”7 
-~~ I_.~_.- _~_ _.-- -..- 

0,957 0,952 0,946 0,939 0,931 0,922 
(0,957) (0,952) (0,946) (0,939) (0,931) (0,923) 

Tableau 3. X/D = 3,8 
___..__-____. .._._~_ ~-. __ _dL- 

B 0” 10” 20” 30” 40” 50” 60’ 70, 
_~_------.- _-.-__Ix---..--. .---- ..- 

4 (“Cl 27”l 25”5 17”4 16”4 15”3 17”2 19”l J5”3 

ha32 (“c> 38”4 37” 29”7 30” 30”9 35”l 39”8 38 
--- -~-.- -- 

41 (W 0,964 0,962 0,959 0,955 0,949 0,942 0,934 0,927 

Born (“R) (0,963) (0,961) (0,958) (0,953) (0,947) (0,940) (0,932) (0,924) 
_-__-------------- 
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RECENTLY, Hatton and Quarmby [l] presented the results In their solution of the simplified energy equation for 
of a comprehensive analytical study of the effects of the temperature, Hatton and Quarmby used the separa- 
axially varying and unsymmetrical boundary conditions tion-of-variables techniquet which results in an eigen- 
on heat transfer in turbulent flow between parallel 
plates. These authors made a thorough investigation of --- 
heat transfer in tbe entrance and fully developed regions t This method is possible if the velocity (and 
covering a wide range of Reynolds number, Prandtl consequently the eddy diffusivity) is a function of 
number and thermal situations. The flow was assumed wall distance only. It is therefore restricted to the 
to be fully developed in the hydrodynamic sense. case of a flow which is developed hydrodynamically. 
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value problem. They employed the velocity dis~ibution 
of Deissler [Z], but, realizing that in the unsymmetrical 
heat-transfer case there would be significant temperature 
gradients in the central region, they modified the eddy 
diiusivity (e} profile. They assumed a constant value of F 
over the middle half of the channel on the grounds that 
this was in closer agreement with experimental observa- 
tions. For convenience, their results were shown dia- 
grammatically as local Nusselt number versus axial 
position. 

In the present note, a comparison is made between 
Hatton and Quarmby’s analysis and one which has been 
made by the present writers. To some extent, the com- 
parison serves to check the results of both forms of 
investigation and brings to light the effect of the important 
~sumption concerning eddy diffusivity in asymmetri~l 
heat transfer. While the basic energy equation and the 
forms of the velocity distributions of the two analyses 
are essentially the same, the techniques of calculating 
the Nusselt numbers are different. We have employed the 
boundary-layer model making a calculation for the 
temperature field and hence Nusselt number for various 
thicknesses of the thermal boundary layer, 

In a previous paper [3], in which the present authors 
were concerned with the thermal entry length for uniform 
heat flux at one wall (the other wall being adiabatic) 
expressions for the tem~ture are presented. These 
expressions were derived assuming linear heat flux 
across the thermal boundary iayer and an eddy diffusivity 
distribution as given by Deissler [Z]. It is a easy step to 
calculate the local Nusselt number, Nli, which is given 
by 

Nir = 
- a+ [& (T,+ - 7’)ly*=, 

fr 

s If’i 

(1) 
EL+ T+ dy+ u+ d-v* 

0 0 

where s is the channel width, 6 is the thermal boundary 
lay thickness and u+, J+, have their usual meanings, 
p is [(Tw - T)c +&p,], where T,,. is the local wall 
temperature. The corresponding Reynolds number of 
the flow is 

S*!2 
& = 4 

f 0 
II dj+. (21 

It will be observed that the expressions for the Nusselt 
number according to Hatton and Quarmby (their 
equation 18) and equation (1) are different in form. 
Differences in the numerical result must also be expected 
on accotmt of the different eddy diffusivity distributions 
which have been used. In the present study, we have 
used an eddy diffusivity which is a linear function of 
JJ’*(~+ r 26). This is compatible with constant shear- 
stress distribution. Hatton and Quarmby use the more 
realistic two-part distribution [their equation (3), y+ > 
261 in conjunction with a linear variation of shear stress. 
The latter authors therefore assume a smaller eddy 
diffusivity, and their equation will, in general, predict 
a smaller heat-transfer coefficient than that given by 
equation (1). The difference in the two results will also 

be a function of the Reynolds and Prandtl numbers. 
In the case of fluids of large Prandtl number, the differ- 
ence will be least marked because the temperature changes 
in the middle of the channel are smaller with such 
fluids. The effect of Reynolds number is more diffi&t 
to assess. 

The features of the two analyses as described previously 
are illustrated in Fig. 1, where the Nusselt number is 
plotted against axial position. Hatton and Quarmby’s 
data for the Prandtl number of 0.72 can be obtained by 
graphical interpolations using their plots for Pr = 0.1, 1 
and 10. Nusseh number for these three values of the 
Prandtl number were also obtained by a private com- 
munication with the same authors. The comparison is 
restricted to values of Pr * 1 because of the use of a 
s~plified expression for f (r+ < 26) in the boundary 
layer method. 

The Reynolds number given in Fig. 1 are taken from 
Hatton and Quarmby’s paper where their Iie - s*/2 
relationship is tabulated. Having chosen a value of S+ 
which is suitable for computational purposes, the value 
of Re is determined from equation (2). While we use the 
same three values of the Reynolds number for the 
purpose of comparison, it should be realized that our 
s+ values are not quite the same as those of Hatton and 
Quarmby because a different u+(y+) relation has been 
used. 

It is to 
Revnolds 

be observed that over the whole range of 
numbers. the “fully develoned” Nusselt 

number calculated with our method is larger. (The largest 
difference occurs at the largest Reynolds number, Re = 
49,457&f In the developed region, the smaller heat- 
transfer co&cient of Hatton and Quarmby is corn- 
patible with their smaller eddy-diffusivity values. In the 
entry region, the greatest divergence between the two 
predictions occurs at the smallest Reynolds number, 
i.e. at Re = 7096. There is. however. excellent aereement 
at very small values of X*.for all Reynolds numbers and 
this is to be expected for the following important reasons 
In the predominantly viscous region near the wall, our 
expression for F [viz. (O~109)zt(v] is a very good approxima- 
tion to Hatton and Quarmby’s value [their equation (3)] 
for gas flows. Therefore, where the thermal boundary 
layer is confined to the region y* < 26 ~co~espondingly 
small Xi), both arralyses should predict practically 
the same heat-transfer coefficient. Co~cid~~ of the 
curves near X* = I for all Reynolds number is evidence 
of this. Further evidence of the correctness of the geo- 
metry of the curves of both analyses is to be found & a 
study of their slopes. It will be remembered that Hatton 
and Quarmby use a constant value of eddy diffusivity 
over the middle half of the duct. When the thermal 
boundary layer has grown to (s/4), further growth to the 
“developed” condition will be less rapid according to 
their analysis. An examination of the curvature of the 
curves in Fig. 1 shows the effect of this on the distribution 
of the local heat-transfer coefficient. The Hatton and 
Quarmby analysis predicts a smaller heat-transfer 
coefhcient which is attained in a longer entry length. 

For completeness, the familiar r~ommendation NU -- 
0,023 * Re”,*Pro*4 for the fully develo~d heat-transfer 
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FIG. I. Nu vs. X+, one side insulated, q = con%,, Pr = O-72. 

---- Present analysis _.-.- Hatton el al. 
--I_ NZJ = 04X?3Re~~*Pr”~4 (Re > fOOO@ 

coefficient has been included. This equation applies to 
symmetrical heat transfer in pipe Aow, and is sometimes 
used for other geometries on the understanding that 
the hydraulic mean diameter is applicable. 

The greater the eddy diffusion in the heat-transfer 
process, the shorter will be the entrance length. It is 
difficult to define the entrance length quantitatively, and 
the determination of the position of Nu -+ Ml, by the 
two anaiyses can only be made appro~mateiy. For the 
present thermal boundary conditions, Hatton and 
,Quarmby’s value for the thermal entry length can be 
estimated from Fig. 1, 2 and 3 of their paper. The value 
of the thermal entry length according to our boundary- 
layer model is less for the reasons given previously. For 
the practical purposes, the difference in the two results is 
insignificant. 

The two analyses require extensive numerical computa- 

tion, and in view of this, the agreement betwmn the 
results suggests reliable evaluation of the problem in 
both studies. Those numerical differences which do 
exist are readily accounted for by careful consideration 
of the assumptions used in the analyses. 
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